Bulk Deformation Processes

- The initial form is bulk rather than sheet including cylindrical bars and billets, rectangular billets and slabs. Figure (3-10) shows some steel products made in rolling mill.

Figure (3-10) steel products made in rolling mill.

The commercial and technological importance of bulk deformation processes derives from the following:

- When performed as hot working operations, they can achieve significant change in the shape of the workpart.
- When performed as cold working operations, they can be used to increase its strength through strain hardening.
- These processes produce little or no waste as a byproduct of the operation. Some bulk deformation operations are near net shape or net shape processes.

1. Rolling Processes

Definition: it is a deformation process in which the thickness of the w.p. is reduced by compressive forces exerted by two opposing rolls as illustrated in figure (3-11).

Figure (3-11) The Rolling Process (Flat Rolling).

Hot Rolling:

- It is preferred owing to large amount of deformation required.
- It is generally free of residual stresses.
- Its properties are isotropic.
- The product cannot be held to close tolerances (disadvantage).
- The surface has a characteristic oxide scale (disadvantage).

Cold Rolling:

- Strengthens the metal.
- Permits a tighter tolerance on thickness.
- The surface of cold-rolled sheet is absent of scale and superior to the corresponding hot-rolled product.

Refer to figure (3-10) to explain the following items:

- Ingot: casted metal block ready for forming operations.
- Bloom: rolled from ingots and having sq. cross sec. (150mmX150mm) or larger.
- Slab: rolled from ingot or bloom and having rect. cross sec. (250mm width or more X 40 mm thickness or more). Products like plates, sheets, and strips. Plates are used in shipbuilding, bridges, boilers and welded structures, tubes and pipes.
- Billets: rolled from bloom and having sq. cross sec. (40mm larger). Products like bars and rods.

Flat Rolling and Its Analysis:

- It involves the rolling of slabs, strips, sheets and plates of workpiece having a rectangular cross-section (width \gg thickness). Figure (3-12) explains the flat rolling.

Figure (3-12) Nomenclatures of Flat Rolling (side view).
v_{r} : roll speed,
v_{o} : entering speed of w.p.,
v_{f}. exiting speed of w.p.,
t_{o} : original thickness of w.p.,
t_{f} f final thickness of w.p.,
θ : angle of contact with rolls.

1. Thickness Reduction:

$\mathbf{d}=\mathbf{t}_{\mathbf{o}}-\mathbf{t}_{\mathbf{f}} \quad \mathrm{d}:$ draft (reduced amount of thickness)
$\boldsymbol{r}=\frac{\boldsymbol{d}}{\boldsymbol{t}_{\boldsymbol{o}}} \quad r:$ reduction in single rolling operation
$\boldsymbol{r}=\frac{\boldsymbol{d}_{\mathbf{1}}+\boldsymbol{d}_{\mathbf{2}}+\boldsymbol{d}_{\mathbf{3}}+\cdots}{\boldsymbol{t}_{\boldsymbol{o}}} \quad$ r: reduction in a series of rolling operation

2. Volume Flow of Material:

- Rolling increases w.p. width (spreading is cleared with low w/t and low friction).
- Conservation of matter:

$$
t_{o} w_{o} L_{o}=t_{f} w_{f} L_{f}
$$

- Volume rate of material flow:

$$
t_{o} w_{o} v_{o}=t_{f} w_{f} v_{f}
$$

w_{o} : original width of w.p., w_{f}. final width of w.p.,
L_{o} : original length of w.p.,
L_{f} : final length of w.p.,

3. The Slip:

$$
\begin{aligned}
& v_{r}>v_{o} \\
& v_{r}<v_{f}
\end{aligned}
$$

- The amount of slip between the rolls and the w.p. is determined by the forward slip s :

$$
s=\frac{v_{f}-v_{r}}{v_{r}}
$$

- No-slip point (neutral point) is located on contact arc at which $\left(v_{r}=\right.$ speed of w.p.).
- Slipping and friction occur on either side of this point.

4. Stress and Strain:

- True strain: $\quad \varepsilon=\ln \frac{t_{o}}{\boldsymbol{t}_{\boldsymbol{f}}}$
- Average flow stress: $\overline{\boldsymbol{Y}}_{f}=\frac{\boldsymbol{K} \varepsilon^{n}}{1+\boldsymbol{n}}$
$\overline{\boldsymbol{Y}}_{\boldsymbol{f}}$: average flow stress
ε : maximum strain value during the rolling process.

5. Friction:

Figure (3-13) explains the frictional forces acting in rolling process.
Before no-slip

Figure (3-13) Frictional force acting along the w.p-roll interfaces

$$
\boldsymbol{F}_{f}=\boldsymbol{F}_{\text {roll }} \boldsymbol{\mu}
$$

$\mathrm{F}_{\mathrm{f} \text { left }}>\mathrm{F}_{\mathrm{f} \text { right }}$ always so that the net friction force and the roll speed are in the same direction from left to right to make the rolling process possible.
μ : friction coefficient,
F_{f} friction force,
$\mathrm{F}_{\text {roll: }}$ roll force,
$\mathrm{F}_{\mathrm{f} \text { left: }}$ left friction force,
$\mathrm{F}_{\text {fright }}$: right friction force,

- Maximum Possible Draft:

$d_{\max }=\mu^{2} R$
R: roll radius.
If $\mu=0.0, \mathrm{~d}=0.0$ then no rolling.
μ depends on: 1- lubrication, 2- w.p. material, 3- working temperature.

- In cold rolling : $\mu \approx 0.1$
- In warm rolling: $\mu \approx 0.2$
- In hot rolling: $\mu \approx 0.4$

Notes:

- In hot rolling a condition is often occur called "sticking".
- In sticking: hot w.p. surface adheres to the rolls over the contact arc. Sticking is often occur in the rolling of steels and high-temperature alloys.
- At sticking, the μ can be as high as 0.7.
- The consequences of sticking is: speed of surface layers of w.p. having the same speed of V_{r} and deformation of below surface is more severe in order to allow passage of the w.p. through the roll gap.

6. Roll Force:

- The roll force is required to maintain separation between the two rolls.
- It can be calculated by integrating the unit roll pressure over the roll-w.p contact area as in figure (3-14):

$$
F_{\text {roll }}=w \int_{0}^{L} p d L
$$

$w:$ width of w.p. being rolled
p : roll pressure
L: contact length

Figure (3-14) pressure variation in flat rolling

- For low frictional conditions, the roll force can be calculated as:

$$
F_{\text {roll }}=\overline{\boldsymbol{Y}}_{\boldsymbol{f}} w L
$$

$\overline{\boldsymbol{Y}}_{\boldsymbol{f}}$: average flow stress experienced by the w.p. in the roll gap

- For the higher frictional conditions, the roll force can be calculated as:

$$
F_{\text {roll }}=\bar{Y}_{f} w L\left(1+\frac{\mu L}{2 t_{a v}}\right)
$$

$t_{a v}$: average thickness of w.p. $\left(t_{a v}=\left(t_{o}+t_{f}\right) / 2\right)$

- By aiding of figure (3-15), the contact length L can be determine as:

$$
L=\sqrt{R\left(t_{o}-t_{f}\right)}
$$

Figure (3-15) Contact length in flat rolling.

7. Torque and Power:

a- Torque:

- It is estimated by assuming that the roll force acts in the middle of the contact arc (this results in a moment arm of 0.5 L):

Then the torque per roll is:

$$
T=0.5 F_{\text {roll }} L
$$

- It is found that ($\mathbf{0 . 5 L}$ moment arm) is good estimate for hot rolling and (0.4 L moment arm) is a better estimate for cold rolling.

b-Power:

- It is given by:

$$
\begin{gathered}
P=T \omega \\
\omega=2 \pi N / 60 \\
P=0.5 F_{\text {roll }} L \frac{2 \pi N}{60} \\
\therefore P=\frac{\pi N F_{\text {roll }} L}{60} \quad \text { per roll } \\
\text { And } \\
P=\frac{2 \pi N F_{\text {roll }} L}{60} \text { for } 2 \text { rolls }
\end{gathered}
$$

T: roll torque (N.m)
ω : angular velocity of roll ($\mathrm{rad} / \mathrm{s}$)
N : rotational velocity of roll (rpm)
P : rolling power (W)

Example (1):

A $300-\mathrm{mm}$-wide strip $25-\mathrm{mm}$ thick is fed through a rolling mill with two powered rolls each of radius $=250 \mathrm{~mm}$. The w.p. thickness is to be reduced to 22 mm in one pass at a roll speed of $50 \mathrm{rev} / \mathrm{min}$. The w.p. material has a flow curve defined by $\mathrm{K}=275 \mathrm{MPa}$ and $\mathrm{n}=0.15$, and the coefficient of friction between the rolls and the w.p. is assumed to be 0.12 . Determine if the friction is sufficient to permit the rolling operation to be accomplished. If so, calculate the roll force, torque, and horsepower.

Solution:

$\mathrm{d}=\mathrm{t}_{\mathrm{o}}-\mathrm{t}_{\mathrm{f}}=25-22=3 \mathrm{~mm}$
$\mathrm{d}_{\text {max }}=\mu^{2} \mathrm{R}=\left(0.12^{2}\right)(250)=3.6 \mathrm{~mm}$
Since $\quad \mathbf{d}_{\text {max }}>\mathbf{d}$ then the rolling process is feasible. Answer
Since the friction coefficient is low then we can use the equation:

$$
\begin{gathered}
F_{\text {roll }}=\bar{Y}_{f} w L \\
L=\sqrt{R\left(t_{o}-t_{f}\right)}=\sqrt{(250)(3)}=27.4 \mathrm{~mm} \\
\bar{Y}_{f}=\frac{K \varepsilon^{n}}{n+1}, \quad \varepsilon=\ln \frac{t_{o}}{t_{f}}=\ln \frac{25}{22}=0.128 \\
\bar{Y}_{f}=\frac{(275)\left(0.128^{0.15}\right)}{0.15+1}=175.7 \mathrm{MPa} \\
\therefore \quad F_{\text {roll }}=(175.7)(300)(27.4)=1444.254 \mathrm{kN} \underline{\text { Answer }} \\
T=0.5 F_{\text {roll }} L=0.5(1444.254)\left(\frac{27.4}{1000}\right)=19.8 \mathrm{kN} . \mathrm{m} \underline{\text { Answer }} \\
P=\frac{2 \pi N F_{\text {roll }} L}{60}=\frac{2 \pi(50)(1444.254)(27.4)\left(10^{-3}\right)}{60}=207.1 \mathrm{~kW} \underline{\text { Answer }} \\
\text { or } \quad 1 \mathrm{horsepower}=745.7 \mathrm{~W} \\
\therefore H P=\frac{207.1\left(10^{3}\right)}{745.7}=278 \mathrm{hp} \underline{\text { Answer }}
\end{gathered}
$$

Example (2):
A 9 " wide $6061-\mathrm{O}$ aluminum strip is rolled from a thickness of $1 "$ to $0.8^{\prime \prime}$. If the roll radius is $12^{\prime \prime}$ and the roll rpm is 100 . Calculate the HP required for rolling operation. Take: $K=30,000 p s i, n=0.2$.

Solution:

$$
\begin{gathered}
P=\frac{2 \pi N F_{\text {roll }} L}{60} \\
L=\sqrt{R\left(t_{o}-t_{f}\right)}=\sqrt{(12)(1-0.8)}=1.5499^{\prime \prime} \div 39.4=0.0393 \mathrm{~m}=39.3 \mathrm{~mm}
\end{gathered}
$$

$1 \mathrm{~m}=39.4 \mathrm{in}, \quad 1 \mathrm{in}=25.4 \mathrm{~mm}$

Since the friction coefficient is low then we can use the equation:

$$
\begin{gathered}
F_{r o l l}=\bar{Y}_{f} w L \\
\bar{Y}_{f}=\frac{K \varepsilon^{n}}{n+1}, \quad \varepsilon=\ln \frac{t_{o}}{t_{f}}=\ln \frac{1}{0.8}=0.223 \\
\bar{Y}_{f}=\frac{(30000)\left(0.223^{0.2}\right)}{0.2+1}=18518.3 p s i=(18518.3)(6894.8)=127.7 \mathrm{MPa} \\
1 \mathrm{psi}=6894.8 \mathrm{pa} \\
\therefore F_{r o l l}=(127.7 \mathrm{E} 6)(9 \div 39.4)(0.0393)=1146.4 \mathrm{kN} \\
P=\frac{2 \pi(100)(1146.4)(0.0393)}{60}=472 \mathrm{~kW} \\
\therefore H P=\frac{472\left(10^{3}\right)}{745.7}=633 \mathrm{hp} \underline{\text { Answer }}
\end{gathered}
$$

Example (3):
A $12^{\prime \prime}$ wide strip is rolled from a thickness of $1^{\prime \prime}$ to $0.875^{\prime \prime}$ in one pass. The roll radius and roll speed are $10^{\prime \prime}$ and 50 rpm respectively. Material having the following properties: $\mathrm{K}=40,000 \mathrm{psi}, \mathrm{n}=0.15$ and $\mu=0.12$. Is this process feasible? If so, determine roll force, torque and required HP.

Solution:

$\mathrm{d}=\mathrm{t}_{\mathrm{o}}-\mathrm{t}_{\mathrm{f}}=1-0.875=0.125$ in
$\mathrm{d}_{\max }=\mu^{2} \mathrm{R}=\left(0.12^{2}\right)(10)=0.144 \mathrm{in}$
Since $\quad \mathbf{d}_{\text {max }}>\mathbf{d} \quad$ then the rolling process is feasible. Answer
Since the friction coefficient is low (0.12) then we can use the equation:

$$
\begin{gathered}
F_{\text {roll }}=\bar{Y}_{f} w L \\
L=\sqrt{R\left(t_{o}-t_{f}\right)}=\sqrt{(10)(0.125)}=1.118 i n=0.0284 m=28.4 m m \\
\bar{Y}_{f}=\frac{K \varepsilon^{n}}{n+1}, \quad \varepsilon=\ln \frac{t_{o}}{t_{f}}=\ln \frac{1}{0.875}=0.134
\end{gathered}
$$

$$
\begin{gathered}
\bar{Y}_{f}=\frac{(40000)\left(0.134^{0.15}\right)}{0.15+1}=25729.3 p s i=177.4 \mathrm{MPa} \\
\therefore F_{\text {roll }}=(177.4)(12 x 25.4)(28.4)=1535.6 \mathrm{kN} \underline{\text { Answer }} \\
T=0.5 F_{\text {roll } L} L=0.5(1535.6)(0.0284)=21.8 \mathrm{kN} . \mathrm{m} \underline{\text { Answer }} \\
P=\frac{2 \pi N F_{\text {roll } L}}{60}=\frac{2 \pi(50)(1535.6)(0.0284)}{60}=228.3 \mathrm{~kW} \underline{\text { Answer }}
\end{gathered}
$$

Or

$$
P=T \omega=T \frac{2 \pi N}{60}=114.144 x 2=228.3 k W
$$

$\therefore H P=\frac{228.3\left(10^{3}\right)}{745.7}=306 \mathrm{hp} \underline{\text { Answer }}$

Note:

- According to maximum shear stress criterion (Tresca criterion) that yielding occurs when:

$$
\sigma_{\max }-\sigma_{\min }=\tau_{\max }=\bar{Y}_{f}=\frac{K \varepsilon^{n}}{n+1}
$$

- According to the distortion-energy criterion (von Mises criterion) for the plane strain:
$\overline{\boldsymbol{Y}}_{\boldsymbol{f}}=\frac{2}{\sqrt{3}} \frac{K \varepsilon^{n}}{n+1} \quad$ can be also used to determine $\boldsymbol{F}_{\text {roll }}$.
Plane Stress: is the state of stress in which one or two of the pairs of faces on an element are free from stress.

Plane Strain: is the state of stress where one of the pairs of faces on an element undergoes zero strain.

8. Forces in Hot Rolling:

- The force in hot rolling process can be estimated approximately because of (1) variations in (μ) at elevated temperatures, (2) variations of strain-rate sensitivity (m) at elevated temperatures.
- The following relations are used to estimate the rolling force in hot rolling:

$$
\begin{aligned}
& \text { In case of very high friction } \\
& \text { condition we can use: } \\
& F_{\text {roll }}=Y_{f} w L\left(1+\frac{\mu L}{2 t_{a v}}\right)\left[\begin{array}{c}
Y_{f}=C \dot{\bar{\varepsilon}}^{m} \\
\dot{\bar{\varepsilon}}=\frac{\varepsilon}{t}
\end{array}\right. \\
& \varepsilon=\ln \frac{t_{o}}{t_{f}} \\
& \begin{array}{c}
\boldsymbol{t}=\frac{\boldsymbol{L}}{\boldsymbol{v}_{\boldsymbol{r}}} \\
\boldsymbol{v}_{\boldsymbol{r}}=\boldsymbol{\pi} \boldsymbol{D} \boldsymbol{N}(\mathbf{m} / \mathbf{m i n}) \\
\therefore \dot{\overline{\boldsymbol{\varepsilon}}}=\frac{\boldsymbol{v}_{r}}{\boldsymbol{L}} \ln \frac{\boldsymbol{t}_{\boldsymbol{o}}}{\boldsymbol{t}_{\boldsymbol{f}}}
\end{array}\left\{\begin{array}{l}
v_{r}=R \omega=\frac{D}{2} \frac{2 \pi N}{60} \\
v_{r}=\frac{\pi D N}{60}\left(\frac{m}{s}\right) \\
v_{r}=\pi D N\left(\frac{m}{\min }\right)
\end{array}\right.
\end{aligned}
$$

Torque and Power are calculated as in the preceding discussion.
Where:
$\dot{\bar{\varepsilon}}$: average strain rate
t : time required for an element to undergo this strain in the roll gap
D: roll diameter

Homework:

In hot rolling process, the following data was collected:
$\mathrm{N}=20 \mathrm{rpm}, \quad \mathrm{R}=20 \mathrm{~cm}, \quad t_{o}=40 \mathrm{~mm}, \quad t_{f}=35 \mathrm{~mm}, \quad \mathrm{C}=415 \mathrm{MPa} . \mathrm{s}, \quad m=0.02, \quad w=60 \mathrm{~cm}$, one pass rolling. Find $\mathrm{F}_{\text {roll }}, \mathrm{T}$ and Power.

